Facebook Pixel
Aufgrund eines technischen Problems stehen die Zahlungsoptionen PayPal und EPS derzeit nicht zur Verfügung. Alle anderen Zahlungsmethoden können weiterhin genutzt werden. Wir danken Ihnen für Ihr Verständnis.
Ihr LexisNexis-Team

AI-Driven Mental Health Chatbots

Perceived Empathy, User Satisfaction and Treatment Outcomes
ISBN:
978-3-658-50135-8
Verlag:
Springer Fachmedien Wiesbaden GmbH
Land des Verlags:
Deutschland
Erscheinungsdatum:
09.11.2025
Reihe:
BestMasters
Format:
Softcover
Seitenanzahl:
103
Ladenpreis
93,49EUR (inkl. MwSt. zzgl. Versand)
Lieferung in 3-4 Werktagen Versandkostenfrei ab 40 Euro in Österreich
Hinweis: Da dieses Werk nicht aus Österreich stammt, ist es wahrscheinlich, dass es nicht die österreichische Rechtslage enthält. Bitte berücksichtigen Sie dies bei ihrem Kauf.

As artificial intelligence (AI) continues to evolve, its potential role in online mental health therapy is gaining increasing interest. In this study, a quantitative 2x2 factorial experimental design is used to explore how AI transparency, theory of change (ToC), therapy style of advice, AI acceptance rate and type of mental health issue influence user perceptions of AI-driven mental health chatbots. Using a mixed-methods approach that combines quantitative analysis with sentiment and emotional text mining, the research examines how these variables shape user experiences in terms of perceived empathy, satisfaction and treatment outcomes. The findings reveal that participants who are aware they are interacting with AI tend to report more positive experiences, particularly when an emotional ToC is employed. Furthermore, emotional advice styles elicit deeper emotional engagement, while rational advice is associated with more positive sentiment. Additionally, the emotional tone and conversational dynamics vary by discussion topic, with depression-related conversations showing greater emotional intensity. These insights underline the importance of aligning chatbot communication styles with individual user expectations and emotional needs, offering implications for the design of more personalised mental health technologies.

Biografische Anmerkung

Lynn Miriam Weisker is a master's student at the Department of Information Systems at the University of Liechtenstein. Her research focuses on AI-supported mental health chatbots and their use in supporting mental health.