Facebook Pixel
Inventurbedingt kommt es zwischen 31.10.2025 und dem 11.11.2025 zu Lieferverzögerungen bei Produkten von LexisNexis.
Wir bitte um Verständnis!

The Quadratic Unconstrained Binary Optimization Problem

Theory, Algorithms, and Applications
ISBN:
978-3-03-104522-6
Auflage:
1st ed. 2022
Verlag:
Springer International Publishing
Land des Verlags:
Schweiz
Erscheinungsdatum:
14.07.2023
Herausgeber:
Format:
Softcover
Seitenanzahl:
319
Ladenpreis
197,99EUR (inkl. MwSt. zzgl. Versand)
Lieferung in 5-10 Werktagen Versandkostenfrei ab 40 Euro in Österreich
Hinweis: Da dieses Werk nicht aus Österreich stammt, ist es wahrscheinlich, dass es nicht die österreichische Rechtslage enthält. Bitte berücksichtigen Sie dies bei ihrem Kauf.

The quadratic binary optimization problem (QUBO) is a versatile combinatorial optimization model with a variety of applications and rich theoretical properties. Application areas of the model include finance, cluster analysis, traffic management, machine scheduling, VLSI physical design, physics, quantum computing, engineering, and medicine. In addition, various mathematical optimization models can be reformulated as a QUBO, including the resource constrained assignment problem, set partitioning problem, maximum cut problem, quadratic assignment problem, the bipartite unconstrained binary optimization problem, among others.

This book presents a systematic development of theory, algorithms, and applications of QUBO. It offers a comprehensive treatment of QUBO from various viewpoints, including a historical introduction along with an in-depth discussion of applications modelling, complexity and polynomially solvable special cases, exact and heuristic algorithms, analysis of approximation algorithms, metaheuristics, polyhedral structure, probabilistic analysis, persistencies, and related topics. Available software for solving QUBO is also introduced, including public domain, commercial, as well as quantum computing based codes.



Schlagwörter
Biografische Anmerkung
Abraham P. Punnen is a professor in the department of Mathematics at Simon Fraser University, Burnaby, Canada. His primary research interest is in combinatorial optimization and published extensively in this area. He, jointly with G. Gutin, edited the popular book "The Traveling Salesman Problem and Its Variations" (Springer, 2007).